Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s00284-021-02639-x

http://scihub22266oqcxt.onion/10.1007/s00284-021-02639-x
suck pdf from google scholar
C8390070!8390070!34448061
unlimited free pdf from europmc34448061    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=34448061&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34448061      Curr+Microbiol 2021 ; 78 (10): 3620-33
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Phytomolecules Repurposed as Covid-19 Inhibitors: Opportunity and Challenges #MMPMID34448061
  • Chandramouli V; Niraj SK; Nair KG; Joseph J; Aruni W
  • Curr Microbiol 2021[]; 78 (10): 3620-33 PMID34448061show ga
  • The SARS-CoV-2 virus has spread worldwide to cause a full blown pandemic since 2020. To date, several promising synthetic therapeutics are repurposed and vaccines through different stages of clinical trials were approved and being administered, but still the efficacy of the drugs and vaccines are yet to be decoded. This article highlights the importance of traditional medicinal plants and the phytomolecules derived from them, which possess in vitro antiviral and anti-CoV properties and further explores their potential as inhibitors to molecular targets of SARS-CoV-2 that were evaluated by in silico approaches. Botanicals in traditional medicinal systems have been investigated for anti-SARS-CoV-2 activity through in silico and in vitro studies. However, information linking structure of phytomolecules to their antiviral activity is limited. Most phytomolecules with anti-CoV activity were studied for inhibition of the human ACE2 receptor through which the virus enters host cells, and non-structural proteins 3CLpro and PLpro. Although the proteases are ideal anti-CoV targets, information on plant-based inhibitors for the CoV structural proteins, e.g., spike, envelope, membrane, nucleocapsid required further investigations. In absence of scientific evaluations through in vitro and biocompatibility studies, plant-based antivirals fall short as treatment options. Plant-based anti-SARS-CoV-2 therapeutics can be promising alternatives to their synthetic counterparts as they are economical and bear fewer chances of toxicity, side effects, and viral resistance. Our review could provide a systematic overview of the potential phytomolecules which can be repurposed and subjected to further modes of experimental evaluation to qualify for use in treatment and prophylaxis of SARS-CoV-2 infections.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box