Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s10729-020-09511-7

http://scihub22266oqcxt.onion/10.1007/s10729-020-09511-7
suck pdf from google scholar
C7341703!7341703!32642878
unlimited free pdf from europmc32642878    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32642878      Health+Care+Manag+Sci 2020 ; 23 (3): 315-24
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • COVID-19 scenario modelling for the mitigation of capacity-dependent deaths in intensive care #MMPMID32642878
  • Wood RM; McWilliams CJ; Thomas MJ; Bourdeaux CP; Vasilakis C
  • Health Care Manag Sci 2020[]; 23 (3): 315-24 PMID32642878show ga
  • Managing healthcare demand and capacity is especially difficult in the context of the COVID-19 pandemic, where limited intensive care resources can be overwhelmed by a large number of cases requiring admission in a short space of time. If patients are unable to access this specialist resource, then death is a likely outcome. In appreciating these ?capacity-dependent? deaths, this paper reports on the clinically-led development of a stochastic discrete event simulation model designed to capture the key dynamics of the intensive care admissions process for COVID-19 patients. With application to a large public hospital in England during an early stage of the pandemic, the purpose of this study was to estimate the extent to which such capacity-dependent deaths can be mitigated through demand-side initiatives involving non-pharmaceutical interventions and supply-side measures to increase surge capacity. Based on information available at the time, results suggest that total capacity-dependent deaths can be reduced by 75% through a combination of increasing capacity from 45 to 100 beds, reducing length of stay by 25%, and flattening the peak demand to 26 admissions per day. Accounting for the additional ?capacity-independent? deaths, which occur even when appropriate care is available within the intensive care setting, yields an aggregate reduction in total deaths of 30%. The modelling tool, which is freely available and open source, has since been used to support COVID-19 response planning at a number of healthcare systems within the UK National Health Service.Electronic supplementary material: The online version of this article (10.1007/s10729-020-09511-7) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box