Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.genrep.2020.100765

http://scihub22266oqcxt.onion/10.1016/j.genrep.2020.100765
suck pdf from google scholar
C7324924!7324924 !32835132
unlimited free pdf from europmc32835132
    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=32835132 &cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi

pmid32835132
      Gene+Rep 2020 ; 20 (?): 100765
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19 #MMPMID32835132
  • Ramaiah MJ
  • Gene Rep 2020[Sep]; 20 (?): 100765 PMID32835132 show ga
  • mTOR is a serine-threonine kinase and participates in cell proliferation, cellular metabolism was found to be activated during Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection and replication. During viral replication mTOR, downstream target genes such as ribosomal protein S6 kinase beta 1 (S6K1) and Eukaryotic translational initiation factor 4E-binding protein1 (4-E-BP1) are activated result in ribosome biosynthesis and efficient protein synthesis. In plasmacytoid dendritic cells (pDCs), mTOR plays a key role in the association of adapter protein myeloid differentiation primary response gene 88 (MyD88), Toll-like receptor 9 (TLR9) and interferon regulatory factor (IRF-7) leading to the transcriptional activation of type-I interferon (IFN) genes. Viruses also inactivate the interferon ? (IFN-?) pathway by impairing the IRF-7 mediated activation of IFN-? gene transcription. Thus, mammalian target of rapamycin (mTOR) inhibitors can help in suppressing the early stages of viral infection and replication. Interestingly, the key tumor-suppressor p53 protein will undergo degradation by virus-encoded E3 ubiquitin ligase Ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) leading to an increased viral survival in host cells. Thus, the mTOR inhibitors and p53 activators or microRNAs that functions as p53 and can target 3'-UTR of mTOR and RPS6KB1 might effectively inhibit viral replication in the human respiratory tract and lung cells.
  • ?


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box