Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12985-019-1125-9

http://scihub22266oqcxt.onion/10.1186/s12985-019-1125-9
suck pdf from google scholar
C6381609!6381609!30786886
unlimited free pdf from europmc30786886    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid30786886      Virol+J 2019 ; 16 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response #MMPMID30786886
  • Zhong M; Wang H; Ma L; Yan H; Wu S; Gu Z; Li Y
  • Virol J 2019[]; 16 (ä): ä PMID30786886show ga
  • Background: As a leading cause of respiratory disease, influenza A virus (IAV) infection remains a pandemic threat in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapeutic drugs, development of new drugs is urgently required. Flavonoids extracted from Artemisia rupestris L. have an inhibitory effect on virus infections. Despite this fact, the antiviral properties of 6-demethoxy-4?-O-methylcapillarisin (DMO-CAP), one of such flavonoids, against the influenza virus have not been reported. Thus, the aim of this study is to investigate the anti-IAV virus efficacy and antiviral mechanism of DMO-CAP. Methods: The inhibitory activity of DMO-CAP against IAV was detected in vitro using viral titers by Western blot analysis, qRT-PCR, and immunofluorescence assays. The mechanism of DMO-CAP against influenza virus was analyzed by Western blot analysis, qRT-PCR, and luciferase assay. Results: DMO-CAP exhibits broad spectrum of antiviral activities against IAV in vitro. Mechanistically, DMO-CAP treatment induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), JNK MAPK, and ERK MAPK, which led to the activation of Nrf2/heme oxygenase-1 (HO-1) pathway. Then, the up-regulation of HO-1 expression activated the IFN response and induced the expression of IFN-stimulated genes, thereby leading to efficient anti-IAV effects. Conclusions: DMO-CAP inhibited IAV replication by activating HO-1-mediated IFN response. DMO-CAP may be a potential agent or supplement against IAV infection.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box