Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12859-018-2184-4

http://scihub22266oqcxt.onion/10.1186/s12859-018-2184-4
suck pdf from google scholar
C5956828!5956828 !29769044
unlimited free pdf from europmc29769044
    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=29769044 &cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\29769044 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid29769044
      BMC+Bioinformatics 2018 ; 19 (1 ): 173
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction #MMPMID29769044
  • Faust K ; Xie Q ; Han D ; Goyle K ; Volynskaya Z ; Djuric U ; Diamandis P
  • BMC Bioinformatics 2018[May]; 19 (1 ): 173 PMID29769044 show ga
  • BACKGROUND: There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. RESULTS: Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. CONCLUSION: Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered.
  • |*Neural Networks, Computer [MESH]
  • |Artificial Intelligence/*standards [MESH]
  • |Deep Learning/*classification [MESH]
  • |Humans [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box