Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1155/2018/1875870

http://scihub22266oqcxt.onion/10.1155/2018/1875870
suck pdf from google scholar
C5902001!5902001!29808088
unlimited free pdf from europmc29808088    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid29808088      Int+J+Endocrinol 2018 ; 2018 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy #MMPMID29808088
  • Sifuentes-Franco S; Padilla-Tejeda DE; Carrillo-Ibarra S; Miranda-Díaz AG
  • Int J Endocrinol 2018[]; 2018 (ä): ä PMID29808088show ga
  • Diabetic nephropathy (DN) is the second most frequent and prevalent complication of diabetes mellitus (DM). The increase in the production of oxidative stress (OS) is induced by the persistent hyperglycemic state capable of producing oxidative damage to the macromolecules (lipids, carbohydrates, proteins, and nucleic acids). OS favors the production of oxidative damage to the histones of the double-chain DNA and affects expression of the DNA repairer enzyme which leads to cell death from apoptosis. The chronic hyperglycemic state unchains an increase in advanced glycation end-products (AGE) that interact through the cellular receptors to favor activation of the transcription factor NF-?B and the protein kinase C (PKC) system, leading to the appearance of inflammation, growth, and augmentation of synthesis of the extracellular matrix (ECM) in DN. The reactive oxygen species (ROS) play an important role in the pathogenesis of diabetic complications because the production of ROS increases during the persistent hyperglycemia. The primary source of the excessive production of ROS is the mitochondria with the capacity to exceed production of endogenous antioxidants. Due to the fact that the mechanisms involved in the development of DN have not been fully clarified, there are different approaches to specific therapeutic targets or adjuvant management alternatives in the control of glycemia in DN.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box