Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/nature23910

http://scihub22266oqcxt.onion/10.1038/nature23910
suck pdf from google scholar
C5870873!5870873!28902840
unlimited free pdf from europmc28902840    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28902840      Nature 2017 ; 549 (7673): 528-32
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring #MMPMID28902840
  • Kim S; Kim H; Yim YS; Ha S; Atarashi K; Tan TG; Longman RS; Honda K; Littman DR; Choi GB; Huh JR
  • Nature 2017[Sep]; 549 (7673): 528-32 PMID28902840show ga
  • Maternal immune activation (MIA) contributes to behavioral abnormalities associated with neurodevelopmental disorders in both primate and rodent offspring1-4. In humans, epidemiological studies suggest that exposure of fetuses to maternal inflammation increases the likelihood of developing Autism Spectrum Disorder (ASD)5-7. We recently demonstrated that interleukin-17a (IL-17a) produced by Th17 cells, CD4+ T helper effector cells involved in multiple inflammatory conditions, is required in pregnant mice to induce behavioral as well as cortical abnormalities in the offspring exposed to MIA8. However, it is unclear if other maternal factors are required to promote MIA-associated phenotypes. Moreover, underlying mechanisms by which MIA leads to T cell activation with increased IL-17a in the maternal circulation are not well understood. Here, we show that MIA phenotypes in offspring require maternal intestinal bacteria that promote Th17 cell differentiation. Pregnant mice that had been colonized with the mouse commensal segmented filamentous bacteria (SFB) or human commensal bacteria that induce intestinal Th17 cells were more likely to produce offspring with MIA-associated abnormalities. We also show that small intestine dendritic cells (DCs) from pregnant, but not from non-pregnant, females upon exposure to MIA secrete IL-1?/IL-23/IL-6 and stimulate T cells to produce IL-17a. Overall, our data suggest that defined gut commensal bacteria with a propensity to induce Th17 cells may increase the risk for neurodevelopmental disorders in offspring of pregnant mothers undergoing immune system activation due to infections or autoinflammatory syndromes.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box