Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/s41598-018-22749-0

http://scihub22266oqcxt.onion/10.1038/s41598-018-22749-0
suck pdf from google scholar
C5852083!5852083!29540740
unlimited free pdf from europmc29540740    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid29540740      Sci+Rep 2018 ; 8 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies #MMPMID29540740
  • Edington CD; Chen WLK; Geishecker E; Kassis T; Soenksen LR; Bhushan BM; Freake D; Kirschner J; Maass C; Tsamandouras N; Valdez J; Cook CD; Parent T; Snyder S; Yu J; Suter E; Shockley M; Velazquez J; Velazquez JJ; Stockdale L; Papps JP; Lee I; Vann N; Gamboa M; LaBarge ME; Zhong Z; Wang X; Boyer LA; Lauffenburger DA; Carrier RL; Communal C; Tannenbaum SR; Stokes CL; Hughes DJ; Rohatgi G; Trumper DL; Cirit M; Griffith LG
  • Sci Rep 2018[]; 8 (ä): ä PMID29540740show ga
  • Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs ? ?4-way?, ?7-way?, and ?10-way? ? each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS ?physiome-on-a-chip? approaches in drug discovery.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box