Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/nm.4400

http://scihub22266oqcxt.onion/10.1038/nm.4400
suck pdf from google scholar
C5724390!5724390!28920957
unlimited free pdf from europmc28920957    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28920957      Nat+Med 2017 ; 23 (10): 1176-90
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis #MMPMID28920957
  • Murgai M; Ju W; Eason M; Kline J; Beury D; Kaczanowska S; Miettinen MM; Kruhlak M; Lei H; Shern JF; Cherepanova OA; Owens GK; Kaplan RN
  • Nat Med 2017[Oct]; 23 (10): 1176-90 PMID28920957show ga
  • A deeper understanding of the metastatic process is required for the development of new therapies that improve patient survival. Metastatic tumor cell growth and survival in distant organs is facilitated by the formation of a pre-metastatic niche composed of hematopoietic cells, stromal cells, and extracellular matrix (ECM). Perivascular cells, including vascular smooth muscle cells (vSMCs) and pericytes, are involved in new vessel formation and in promoting stem cell maintenance and proliferation. Given the well-described plasticity of perivascular cells, we hypothesize that perivascular cells similarly regulate tumor cell fate at metastatic sites. Using perivascular cell-specific and pericyte-specific lineage-tracing models, we trace the fate of perivascular cells in the pre-metastatic and metastatic microenvironments. We show that perivascular cells lose the expression of traditional vSMC/pericyte markers in response to tumor-secreted factors and exhibit increased proliferation, migration, and ECM synthesis. Increased expression of the pluripotency gene Klf4 in these phenotypically-switched perivascular cells promotes a less differentiated state characterized by enhanced ECM production that establishes a pro-metastatic fibronectin-rich environment. Genetic inactivation of Klf4 in perivascular cells decreases pre-metastatic niche formation and metastasis. Our data reveal a previously unidentified role for perivascular cells in pre-metastatic niche formation and uncover novel strategies for limiting metastasis.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box