Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.freeradbiomed.2017.04.025

http://scihub22266oqcxt.onion/10.1016/j.freeradbiomed.2017.04.025
suck pdf from google scholar
C5698259!5698259!28433660
unlimited free pdf from europmc28433660    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28433660      Free+Radic+Biol+Med 2017 ; 108 (ä): 500-16
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis #MMPMID28433660
  • Mistry RK; Brewer AC
  • Free Radic Biol Med 2017[Jul]; 108 (ä): 500-16 PMID28433660show ga
  • Reactive oxygen species have emerged as key participants in a broad range of physiological and pathophysiological processes, not least within the vascular system. Diverse cellular functions which have been attributed to some of these pro-oxidants within the vasculature include the regulation of blood pressure, neovascularisation and vascular inflammation. We here highlight the emerging roles of the enzymatically-generated reaction oxygen species, O2- and H2O2, in the regulation of the functions of the gaseous signalling molecules: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2S). These gasotransmitters are produced on demand from distinct enzymatic sources and in recent years it has become apparent that they are capable of mediating a number of homeostatic processes within the cardiovascular system including enhanced vasodilation, angiogenesis, wound healing and improved cardiac function following myocardial infarction. In common with O2- and/or H2O2 they signal by altering the functions of target proteins, either by the covalent modification of thiol groups or by direct binding to metal centres within metalloproteins, most notably haem proteins. The regulation of the enzymes which generate NO, CO and H2S have been shown to be influenced at both the transcriptional and post-translational levels by redox-dependent mechanisms, while the activity and bioavailability of the gasotransmitters themselves are also subject to oxidative modification. Within vascular cells, the family of nicotinamide adenine dinucleotide phosphate oxidases (NAPDH oxidases/Noxs) have emerged as functionally significant sources of regulated O2- and H2O2 production and accordingly, direct associations between Nox-generated oxidants and the functions of specific gasotransmitters are beginning to be identified. This review focuses on the current knowledge of the redox-dependent mechanisms which regulate the generation and activity of these gases, with particular reference to their roles in angiogenesis.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box