Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1371/journal.pone.0188085

http://scihub22266oqcxt.onion/10.1371/journal.pone.0188085
suck pdf from google scholar
C5690473!5690473!29145448
unlimited free pdf from europmc29145448    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid29145448      PLoS+One 2017 ; 12 (11): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR #MMPMID29145448
  • Stein EV; Duewer DL; Farkas N; Romsos EL; Wang L; Cole KD
  • PLoS One 2017[]; 12 (11): ä PMID29145448show ga
  • Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box