Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s10456-017-9565-6

http://scihub22266oqcxt.onion/10.1007/s10456-017-9565-6
suck pdf from google scholar
C5660146!5660146 !28699046
unlimited free pdf from europmc28699046
    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 225.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 259.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 259.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\28699046 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid28699046
      Angiogenesis 2017 ; 20 (4 ): 533-546
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment #MMPMID28699046
  • Lagerweij T ; Dusoswa SA ; Negrean A ; Hendrikx EML ; de Vries HE ; Kole J ; Garcia-Vallejo JJ ; Mansvelder HD ; Vandertop WP ; Noske DP ; Tannous BA ; Musters RJP ; van Kooyk Y ; Wesseling P ; Zhao XW ; Wurdinger T
  • Angiogenesis 2017[Nov]; 20 (4 ): 533-546 PMID28699046 show ga
  • BACKGROUND: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and migration of cells in the brain of mice, however, with limited imaging depth. To enable comprehensive analysis of GBM and the brain microenvironment, in-depth 3D imaging methods are needed. Here, we employed methods for optical tissue clearing prior to 3D microscopy to visualize the brain microvasculature and routes of invasion of GBM cells. METHODS: We present a workflow for ex vivo imaging of optically cleared brain tumor tissues and subsequent computational modeling. This workflow was used for quantification of the microvasculature in relation to nuclear or cellular density in healthy mouse brain tissues and in human orthotopic, infiltrative GBM8 and E98 glioblastoma models. RESULTS: Ex vivo cleared mouse brain tissues had a >10-fold imaging depth as compared to intravital imaging of mouse brain in vivo. Imaging of optically cleared brain tissue allowed quantification of the 3D microvascular characteristics in healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain tumors. Detailed 3D visualization revealed the organization of tumor cells relative to the vasculature, in both gray matter and white matter regions, and patterns of multicellular GBM networks collectively invading the brain parenchyma. CONCLUSIONS: Optical tissue clearing opens new avenues for combined quantitative and 3D microscopic analysis of the topographical relationship between GBM cells and their microenvironment.
  • |*Imaging, Three-Dimensional [MESH]
  • |*Optical Phenomena [MESH]
  • |*Tumor Microenvironment [MESH]
  • |Animals [MESH]
  • |Brain Neoplasms/*pathology [MESH]
  • |Brain/blood supply/pathology [MESH]
  • |Female [MESH]
  • |Fluorescence [MESH]
  • |Glioblastoma/blood supply/pathology [MESH]
  • |Intravital Microscopy [MESH]
  • |Lectins/metabolism [MESH]
  • |Mice, Nude [MESH]
  • |Microvessels/pathology [MESH]
  • |Neovascularization, Pathologic/pathology [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box