Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/s41598-017-10344-8

http://scihub22266oqcxt.onion/10.1038/s41598-017-10344-8
suck pdf from google scholar
C5575164!5575164!28852139
unlimited free pdf from europmc28852139    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28852139      Sci+Rep 2017 ; 7 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Giant THz surface plasmon polariton induced by high-index dielectric metasurface #MMPMID28852139
  • Lin S; Bhattarai K; Zhou J; Talbayev D
  • Sci Rep 2017[]; 7 (ä): ä PMID28852139show ga
  • We use computational approaches to explore the role of a high-refractive-index dielectric TiO2 grating with deep subwavelength thickness on InSb as a tunable coupler for THz surface plasmons. We find a series of resonances as the grating couples a normally-incident THz wave to standing surface plasmon waves on both thin and thick InSb layers. In a marked contrast with previously-explored metallic gratings, we observe the emergence of a much stronger additional resonance. The mechanism of this giant plasmonic resonance is well interpreted by the dispersion of surface plasmon excited in the air\TiO2\InSb trilayer system. We demonstrate that both the frequency and the intensity of the giant resonance can be tuned by varying dielectric grating parameters, providing more flexible tunability than metallic gratings. The phase and amplitude of the normally-incident THz wave are spatially modulated by the dielectric grating to optimize the surface plasmon excitation. The giant surface plasmon resonance gives rise to strong enhancement of the electric field above the grating structure, which can be useful in sensing and spectroscopy applications.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box