Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s13040-017-0141-9

http://scihub22266oqcxt.onion/10.1186/s13040-017-0141-9
suck pdf from google scholar
C5501438!5501438!28694847
unlimited free pdf from europmc28694847    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28694847      BioData+Min 2017 ; 10 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Arete ? candidate gene prioritization using biological network topology with additional evidence types #MMPMID28694847
  • Lysenko A; Boroevich KA; Tsunoda T
  • BioData Min 2017[]; 10 (ä): ä PMID28694847show ga
  • Background: Refinement of candidate gene lists to select the most promising candidates for further experimental verification remains an essential step between high-throughput exploratory analysis and the discovery of specific causal genes. Given the qualitative and semantic complexity of biological data, successfully addressing this challenge requires development of flexible and interoperable solutions for making the best possible use of the largest possible fraction of all available data. Results: We have developed an easily accessible framework that links two established network-based gene prioritization approaches with a supporting isolation forest-based integrative ranking method. The defining feature of the method is that both topological information of the biological networks and additional sources of evidence can be considered at the same time. The implementation was realized as an app extension for the Cytoscape graph analysis suite, and therefore can further benefit from the synergy with other analysis methods available as part of this system. Conclusions: We provide efficient reference implementations of two popular gene prioritization algorithms ? DIAMOnD and random walk with restart for the Cytoscape system. An extension of those methods was also developed that allows outputs of these algorithms to be combined with additional data. To demonstrate the utility of our software, we present two example disease gene prioritization application cases and show how our tool can be used to evaluate these different approaches. Electronic supplementary material: The online version of this article (doi:10.1186/s13040-017-0141-9) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box