Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/s41598-017-03605-z

http://scihub22266oqcxt.onion/10.1038/s41598-017-03605-z
suck pdf from google scholar
C5471217!5471217!28615642
unlimited free pdf from europmc28615642    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28615642      Sci+Rep 2017 ; 7 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Skin sloughing in susceptible and resistant amphibians regulates infection with a fungal pathogen #MMPMID28615642
  • Ohmer MEB; Cramp RL; Russo CJM; White CR; Franklin CE
  • Sci Rep 2017[]; 7 (ä): ä PMID28615642show ga
  • The fungal pathogen Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian population declines globally. Given that Bd infection is limited to the skin in post-metamorphic amphibians, routine skin sloughing may regulate infection. Skin sloughing has been shown to reduce the number of cultivatable microbes on amphibian skin, and Bd infection increases skin sloughing rates at high loads. However, it is unclear whether species specific differences in skin sloughing patterns could regulate Bd population growth on the skin, and influence subsequent infection dynamics. We exposed five Australian frog species to Bd, and monitored sloughing rates and infection loads over time. Sloughing reduced Bd load on the ventral skin surface, in all five species, despite wide variation in susceptibility to disease. In the least susceptible species, an increase in sloughing rate occurred at lower infection loads, and sloughing reduced Bd load up to 100%, leading to infection clearance. Conversely, the drop in Bd load with sloughing was only temporary in the more susceptible species. These findings indicate that the ability of sloughing to act as an effective immune defence is species specific, and they have implications for understanding the pattern of Bd population growth on individual hosts, as well as population-level effects.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box