Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/ncomms15139

http://scihub22266oqcxt.onion/10.1038/ncomms15139
suck pdf from google scholar
C5414078!5414078!28443642
unlimited free pdf from europmc28443642    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28443642      Nat+Commun 2017 ; 8 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Holey two-dimensional transition metal oxide nanosheets for efficient energy storage #MMPMID28443642
  • Peng L; Xiong P; Ma L; Yuan Y; Zhu Y; Chen D; Luo X; Lu J; Amine K; Yu G
  • Nat Commun 2017[]; 8 (ä): ä PMID28443642show ga
  • Transition metal oxide nanomaterials are promising electrodes for alkali-ion batteries owing to their distinct reaction mechanism, abundant active sites and shortened ion diffusion distance. However, detailed conversion reaction processes in terms of the oxidation state evolution and chemical/mechanical stability of the electrodes are still poorly understood. Herein we explore a general synthetic strategy for versatile synthesis of various holey transition metal oxide nanosheets with adjustable hole sizes that enable greatly enhanced alkali-ion storage properties. We employ in-situ transmission electron microscopy and operando X-ray absorption structures to study the mechanical properties, morphology evolution and oxidation state changes during electrochemical processes. We find that these holey oxide nanosheets exhibit strong mechanical stability inherited from graphene oxide, displaying minimal structural changes during lithiation/delithiation processes. These holey oxide nanosheets represent a promising material platform for in-situ probing the electrochemical processes, and could open up opportunities in many energy storage and conversion systems.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box