Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.3892/etm.2017.4034

http://scihub22266oqcxt.onion/10.3892/etm.2017.4034
suck pdf from google scholar
C5403363!5403363!28450904
unlimited free pdf from europmc28450904    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28450904      Exp+Ther+Med 2017 ; 13 (3): 815-20
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • CaMKII: The molecular villain that aggravates cardiovascular disease #MMPMID28450904
  • Zhang P
  • Exp Ther Med 2017[Mar]; 13 (3): 815-20 PMID28450904show ga
  • Pathological remodeling of the myocardium is an integral part of the events that lead to heart failure (HF), which involves altered gene expression, disturbed signaling pathways and altered Ca2+ homeostasis and the players involved in this process. Of particular interest is the chronic activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in heart, which further aggravate the injury to myocardium. Expression and activity of CaMKII have been found to be elevated in various conditions of stressed myocardium and in different heart diseases in both animal models as well as heart patients. CaMKII is a signaling molecule that regulates many cellular pathways by phosphorylating several proteins involved in excitation-contraction coupling and relaxation events in heart, cardiomyocyte apoptosis, transcriptional activation of genes related to cardiac hypertrophy, inflammation, and arrhythmias. CaMKII is activated by reactive oxygen species (ROS), which are elevated under conditions of ischemia-reperfusion injury and in a cyclical manner, CaMKII in turn elevates ROS production. Both ROS and activated CaMKII increase Ca-induced Ca release from sarcoplasmic reticulum, which leads to cardiomyocyte membrane depolarization and arrhythmias. These CaMKII-mediated changes in heart ultimately culminate in dysfunctional myocardium and HF. Genetic studies in animal models clearly demonstrated that inactivation of CaMKII is protective against a variety of stress induced cardiac dysfunctions. Despite significant leaps in understanding the structural details of CaMKII, which is a very complicated and multimeric modular protein, currently there is no specific and potent inhibitor of this enzyme, that can be developed for therapeutic purposes.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box