Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s13321-016-0180-0

http://scihub22266oqcxt.onion/10.1186/s13321-016-0180-0
suck pdf from google scholar
C5395517/?report=reader!5395517!C5395517
unlimited free pdf from europmcC5395517    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmidC5395517      J+Cheminform 2016 ; 8 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Mapping the 3D structures of small molecule binding sites #MMPMIDC5395517
  • Meyers J; Brown N; Blagg J
  • J Cheminform 2016[]; 8 (ä): ä PMIDC5395517show ga
  • Background: Analysis of the 3D structures of protein?ligand binding sites can provide valuable insights for drug discovery. Binding site comparison (BSC) studies can be employed to elucidate the function of orphan proteins or to predict the potential for polypharmacology. Many previous binding site analyses only consider binding sites surrounding an experimentally observed bound ligand. Results: To encompass potential protein?ligand binding sites that do not have ligands known to bind, we have incorporated fpocket cavity detection software and assessed the impact of this inclusion on BSC performance. Using fpocket, we generated a database of ligand-independent potential binding sites and applied the BSC tool, SiteHopper, to analyze similarity relationships between protein binding sites. We developed a method for clustering potential binding sites using a curated dataset of structures for six therapeutically relevant proteins from diverse protein classes in the protein data bank. Two clustering methods were explored; hierarchical clustering and a density-based method adept at excluding noise and outliers from a dataset. We introduce circular plots to visualize binding site structure space. From the datasets analyzed in this study, we highlight a structural relationship between binding sites of cationic trypsin and prothrombin, protein targets known to bind structurally similar small molecules, exemplifying the potential utility of objectively and holistically mapping binding site space from the structural proteome. Conclusions: We present a workflow for the objective mapping of potential protein?ligand binding sites derived from the currently available structural proteome. We show that ligand-independent binding site detection tools can be introduced without excessive penalty on BSC performance. Clustering combined with intuitive visualization tools can be applied to map relationships between the 3D structures of protein binding sites.Graphical abstractMapping binding site space. Electronic supplementary material: The online version of this article (doi:10.1186/s13321-016-0180-0) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box