Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s13023-017-0614-4

http://scihub22266oqcxt.onion/10.1186/s13023-017-0614-4
suck pdf from google scholar
C5392956!5392956!28412959
unlimited free pdf from europmc28412959    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28412959      Orphanet+J+Rare+Dis 2017 ; 12 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Opportunities for developing therapies for rare genetic diseases: focus on gain-of-function and allostery #MMPMID28412959
  • Chen B; Altman RB
  • Orphanet J Rare Dis 2017[]; 12 (ä): ä PMID28412959show ga
  • Background: Advances in next generation sequencing technologies have revolutionized our ability to discover the causes of rare genetic diseases. However, developing treatments for these diseases remains challenging. In fact, when we systematically analyze the US FDA orphan drug list, we find that only 8% of rare diseases have an FDA-designated drug. Our approach leverages three primary insights: first, diseases with gain-of-function mutations and late onset are more likely to have drug options; second, drugs are more often inhibitors than activators; and third, some disease-causing proteins can be rescued by allosteric activators in diseases due to loss-of-function mutations. Results: We have developed a pipeline that combines natural language processing and human curation to mine promising targets for drug development from the Online Mendelian Inheritance in Man (OMIM) database. This pipeline targets diseases caused by well-characterized gain-of-function mutations or loss-of-function proteins with known allosteric activators. Applying this pipeline across thousands of rare genetic diseases, we discover 34 rare genetic diseases that are promising candidates for drug development. Conclusion: Our analysis has revealed uneven coverage of rare diseases in the current US FDA orphan drug space. Diseases with gain-of-function mutations or loss-of-function mutations and known allosteric activators should be prioritized for drug treatments. Electronic supplementary material: The online version of this article (doi:10.1186/s13023-017-0614-4) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box