Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.bpj.2017.02.026

http://scihub22266oqcxt.onion/10.1016/j.bpj.2017.02.026
suck pdf from google scholar
C5390049!5390049!28402893
unlimited free pdf from europmc28402893    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28402893      Biophys+J 2017 ; 112 (7): 1517-28
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Magnetic Resonance Relaxation Anisotropy: Physical Principles and Uses in Microstructure Imaging #MMPMID28402893
  • Knight MJ; Dillon S; Jarutyte L; Kauppinen RA
  • Biophys J 2017[Apr]; 112 (7): 1517-28 PMID28402893show ga
  • Magnetic resonance imaging (MRI) provides an excellent means of studying tissue microstructure noninvasively since the microscopic tissue environment is imprinted on the MRI signal even at macroscopic voxel level. Mesoscopic variations in magnetic field, created by microstructure, influence the transverse relaxation time (T2) in an orientation-dependent fashion (T2 is anisotropic). However, predicting the effects of microstructure upon MRI observables is challenging and requires theoretical insight. We provide a formalism for calculating the effects upon T2 of tissue microstructure, using a model of cylindrical magnetic field perturbers. In a cohort of clinically healthy adults, we show that the angular information in spin-echo T2 is consistent with this model. We show that T2 in brain white matter of nondemented volunteers follows a U-shaped trajectory with age, passing its minimum at an age of ?30 but that this depends on the particular white matter tract. The anisotropy of T2 also interacts with age and declines with increasing age. Late-myelinating white matter is more susceptible to age-related change than early-myelinating white matter, consistent with the retrogenesis hypothesis. T2 mapping may therefore be incorporated into microstructural imaging.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box