Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1158/0008-5472.CAN-16-2074

http://scihub22266oqcxt.onion/10.1158/0008-5472.CAN-16-2074
suck pdf from google scholar
C5380541!5380541!28202516
unlimited free pdf from europmc28202516    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 267.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 267.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid28202516      Cancer+Res 2017 ; 77 (7): 1564-74
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Modeling the Genetic Regulation of Cancer Metabolism: Interplay Between Glycolysis and Oxidative Phosphorylation #MMPMID28202516
  • Yu L; Lu M; Jia D; Ma J; Ben-Jacob E; Levine H; Kaipparettu BA; Onuchic JN
  • Cancer Res 2017[Apr]; 77 (7): 1564-74 PMID28202516show ga
  • Abnormal metabolism is a hallmark of cancer, yet its regulation remains poorly understood. Cancer cells were considered to utilize primarily glycolysis for ATP production, referred to as the Warburg effect. However, recent evidence suggests that oxidative phosphorylation (OXPHOS) plays a crucial role during cancer progression. Here we utilized a systems biology approach to decipher the regulatory principle of glycolysis and OXPHOS. Integrating information from literature, we constructed a regulatory network of genes and metabolites from which we extracted a core circuit containing HIF-1, AMPK, and ROS. Our circuit analysis showed that while normal cells have an oxidative state and a glycolytic state, cancer cells can access a hybrid state with both metabolic modes coexisting. This was due to higher ROS production and/or oncogene activation, such as RAS, MYC, and c-SRC. Guided by the model, we developed two signatures consisting of AMPK and HIF-1 downstream genes, respectively, to quantify the activity of glycolysis and OXPHOS. By applying the AMPK and HIF-1 signatures to TCGA patient transcriptomics data of multiple cancer types and single-cell RNA-seq data of lung adenocarcinoma, we confirmed an anti-correlation between AMPK and HIF-1 activities and the association of metabolic states with oncogenes. We propose that the hybrid phenotype contributes to metabolic plasticity, allowing cancer cells to adapt to various microenvironments. Using model simulations, our theoretical framework of metabolism can serve as a platform to decode cancer metabolic plasticity and design cancer therapies targeting metabolism.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box