Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1080/09537104.2016.1195492

http://scihub22266oqcxt.onion/10.1080/09537104.2016.1195492
suck pdf from google scholar
C5359778!5359778!27348543
unlimited free pdf from europmc27348543    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid27348543      Platelets 2017 ; 28 (1): 14-9
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Inherited platelet disorders: Insight from platelet genomics using next-generation sequencing #MMPMID27348543
  • Maclachlan A; Watson SP; Morgan NV
  • Platelets 2017[Jan]; 28 (1): 14-9 PMID27348543show ga
  • Inherited platelet disorders (IPDs) are a heterogeneous group of disorders associated with normal or reduced platelet counts and bleeding diatheses of varying severities. The identification of the underlying cause of IPDs is clinically challenging due to the absence of a gold-standard platelet test, and is often based on a clinical presentation and normal values in other hematology assays. As a consequence, a DNA-based approach has a potentially important role in the investigation of these patients. Next-generation sequencing (NGS) technologies are allowing the rapid analysis of genes that have been previously implicated in IPDs or that are known to have a key role in platelet regulation, as well as novel genes that have not been previously implicated in platelet dysfunction. The potential limitations of NGS arise with the interpretation of the sheer volume of genetic information obtained from whole exome sequencing (WES) or whole genome sequencing (WGS) in order to identify function-disrupting variants. Following on from bioinformatic analysis, a number of candidate genetic variants usually remain, therefore adding to the difficulty of phenotype?genotype segregation verification. Linking genetic changes to an underlying bleeding disorder is an ongoing challenge and may not always be feasible due to the multifactorial nature of IPDs. Nevertheless, NGS will play a key role in our understanding of the mechanisms of platelet function and the genetics involved.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box