Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.18632/oncotarget.13637

http://scihub22266oqcxt.onion/10.18632/oncotarget.13637
suck pdf from google scholar
C5352066!5352066!27903964
unlimited free pdf from europmc27903964    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid27903964      Oncotarget 2017 ; 8 (1): 1429-37
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy #MMPMID27903964
  • Zhuo C; Jiang R; Lin X; Shao M
  • Oncotarget 2017[Jan]; 8 (1): 1429-37 PMID27903964show ga
  • We previously generated a rat model of diabetic cardiomyopathy and found that the expression of long non-coding RNA H19 was downregulated. The present study was aimed to explore the pathogenic role of H19 in the development of diabetic cardiomyopathy. Overexpression of H19 in diabetic rats attenuated cardiomyocyte autophagy and improved left ventricular function. High glucose was found to reduce H19 expression and increase autophagy in cultured neonatal cardiomyocytes. The results of RNA-binding protein immunoprecipitation showed that H19 could directly bind with EZH2 in cardiomyocytes. The chromatin immunoprecipitation assays indicated that H19 knockdown could reduce EZH2 occupancy and H3K27me3 binding in the promoter of DIRAS3. In addition, overexpression of H19 was found to downregulate DIRAS3 expression, promote mTOR phosphorylation and inhibit autophagy activation in cardiomyocytes exposed to high glucose. Furthermore, we also found that high glucose increased DIRAS3 expression in cardiomyocytes and DIRAS3 induced autophagy by inhibiting mTOR signaling. In conclusion, our study suggested that H19 could inhibit autophagy in cardiomyocytes by epigenetically silencing of DIRAS3, which might provide novel insights into understanding the molecular mechanisms of diabetic cardiomyopathy.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box