Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 243.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\27542298.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 J+Invest+Dermatol 2016 ; 136 (9): e87-93 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Research Techniques Made Simple: The Application of CRISPR-Cas9 and Genome Editing in Investigative Dermatology #MMPMID27542298
Guitart JR; Johnson JL; Chien WW
J Invest Dermatol 2016[Sep]; 136 (9): e87-93 PMID27542298show ga
Designer nucleases have gained widespread attention for their ability to precisely modify genomic DNA in a programmable manner. These genome-editing nucleases make double-stranded breaks at specified loci, and desired changes can be made to modify, ablate, or excise target genes. This technology has been used widely to develop human disease models in laboratory animals and to study gene functions by silencing, activating, or modifying them. Furthermore, the recent discovery of a bacterially derived programmable nuclease termed clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) has revolutionized the field because of its versatility and wide applicability. In this article, we discuss various modalities used to achieve genome editing with an emphasis on CRISPR-Cas9. We discuss genome-editing strategies to either repair or ablate target genes, with emphasis on their applications for investigating dermatological diseases. Additionally, we highlight preclinical studies showing the potential of genome editing as a therapy for congenital blistering diseases and as an antimicrobial agent, and we discuss limitations and future directions of this technology.