Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1128/JB.00451-16

http://scihub22266oqcxt.onion/10.1128/JB.00451-16
suck pdf from google scholar
C5038014!5038014!27501983
unlimited free pdf from europmc27501983    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid27501983      J+Bacteriol 2016 ; 198 (20): 2864-75
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids #MMPMID27501983
  • Terpolilli JJ; Masakapalli SK; Karunakaran R; Webb IUC; Green R; Watmough NJ; Kruger NJ; Ratcliffe RG; Poole PS
  • J Bacteriol 2016[Oct]; 198 (20): 2864-75 PMID27501983show ga
  • Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-?-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids.IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-?-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box