Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\27577240.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 BMC+Med+Inform+Decis+Mak 2016 ; 16 (1): ä Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system #MMPMID27577240
Luo L; Li L; Hu J; Wang X; Hou B; Zhang T; Zhao LP
BMC Med Inform Decis Mak 2016[]; 16 (1): ä PMID27577240show ga
Background: Healthcare providers generate a huge amount of biomedical data stored in either legacy system (paper-based) format or electronic medical records (EMR) around the world, which are collectively referred to as big biomedical data (BBD). To realize the promise of BBD for clinical use and research, it is an essential step to extract key data elements from unstructured medical records into patient-centered electronic health records with computable data elements. Our objective is to introduce a novel solution, known as a double-reading/entry system (DRESS), for extracting clinical data from unstructured medical records (MR) and creating a semi-structured electronic health record database, as well as to demonstrate its reproducibility empirically. Methods: Utilizing the modern cloud-based technologies, we have developed a comprehensive system that includes multiple subsystems, from capturing MRs in clinics, to securely transferring MRs, storing and managing cloud-based MRs, to facilitating both machine learning and manual reading, and to performing iterative quality control before committing the semi-structured data into the desired database. To evaluate the reproducibility of extracted medical data elements by DRESS, we conduct a blinded reproducibility study, with 100 MRs from patients who have undergone surgical treatment of lung cancer in China. The study uses Kappa statistic to measure concordance of discrete variables, and uses correlation coefficient to measure reproducibility of continuous variables. Results: Using the DRESS, we have demonstrated the feasibility of extracting clinical data from unstructured MRs to create semi-structured and patient-centered electronic health record database. The reproducibility study with 100 patient?s MRs has shown an overall high reproducibility of 98 %, and varies across six modules (pathology, Radio/chemo therapy, clinical examination, surgery information, medical image and general patient information). Conclusions: DRESS uses a double-reading, double-entry, and an independent adjudication, to manually curate structured data elements from unstructured clinical data. Further, through distributed computing strategies, DRESS protects data privacy by dividing MR data into de-identified modules. Finally, through internet-based computing cloud, DRESS enables many data specialists to work in a virtual environment to achieve the necessary scale of processing thousands MRs within days. This hybrid system represents probably a workable solution to solve the big medical data challenge. Electronic supplementary material: The online version of this article (doi:10.1186/s12911-016-0357-5) contains supplementary material, which is available to authorized users.