Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.4103/1673-5374.187019

http://scihub22266oqcxt.onion/10.4103/1673-5374.187019
suck pdf from google scholar
C4994430!4994430!27630671
unlimited free pdf from europmc27630671    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid27630671      Neural+Regen+Res 2016 ; 11 (7): 1033-42
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Repair of traumatic plasmalemmal damage to neurons and other eukaryotic cells #MMPMID27630671
  • Bittner GD; Spaeth CS; Poon AD; Burgess ZS; McGill CH
  • Neural Regen Res 2016[Jul]; 11 (7): 1033-42 PMID27630671show ga
  • The repair (sealing) of plasmalemmal damage, consisting of small holes to complete transections, is critical for cell survival, especially for neurons that rarely regenerate cell bodies. We first describe and evaluate different measures of cell sealing. Some measures, including morphological/ultra-structural observations, membrane potential, and input resistance, provide very ambiguous assessments of plasmalemmal sealing. In contrast, measures of ionic current flow and dye barriers can, if appropriately used, provide more accurate assessments. We describe the effects of various substances (calcium, calpains, cytoskeletal proteins, ESCRT proteins, mUNC-13, NSF, PEG) and biochemical pathways (PKA, PKC, PLC, Epac, cytosolic oxidation) on plasmalemmal sealing probability, and suggest that substances, pathways, and cellular events associated with plasmalemmal sealing have undergone a very conservative evolution. During sealing, calcium ion influx mobilizes vesicles and other membranous structures (lysosomes, mitochondria, etc.) in a continuous fashion to form a vesicular plug that gradually restricts diffusion of increasingly smaller molecules and ions over a period of seconds to minutes. Furthermore, we find no direct evidence that sealing occurs through the collapse and fusion of severed plasmalemmal leaflets, or in a single step involving the fusion of one large wound vesicle with the nearby, undamaged plasmalemma. We describe how increases in perikaryal calcium levels following axonal transection account for observations that cell body survival decreases the closer an axon is transected to the perikaryon. Finally, we speculate on relationships between plasmalemmal sealing, Wallerian degeneration, and the ability of polyethylene glycol (PEG) to seal cell membranes and rejoin severed axonal ends ? an important consideration for the future treatment of trauma to peripheral nerves. A better knowledge of biochemical pathways and cytoplasmic structures involved in plasmalemmal sealing might provide insights to develop treatments for traumatic nerve injuries, stroke, muscular dystrophy, and other pathologies.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box