Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1098/rstb.2015.0316

http://scihub22266oqcxt.onion/10.1098/rstb.2015.0316
suck pdf from google scholar
C4978874!4978874!27502381
unlimited free pdf from europmc27502381    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid27502381      Philos+Trans+R+Soc+Lond+B+Biol+Sci 2016 ; 371 (1703): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier #MMPMID27502381
  • Estes LD; Searchinger T; Spiegel M; Tian D; Sichinga S; Mwale M; Kehoe L; Kuemmerle T; Berven A; Chaney N; Sheffield J; Wood EF; Caylor KK
  • Philos Trans R Soc Lond B Biol Sci 2016[Sep]; 371 (1703): ä PMID27502381show ga
  • Rapidly rising populations and likely increases in incomes in sub-Saharan Africa make tens of millions of hectares of cropland expansion nearly inevitable, even with large increases in crop yields. Much of that expansion is likely to occur in higher rainfall savannas, with substantial costs to biodiversity and carbon storage. Zambia presents an acute example of this challenge, with an expected tripling of population by 2050, good potential to expand maize and soya bean production, and large areas of relatively undisturbed miombo woodland and associated habitat types of high biodiversity value. Here, we present a new model designed to explore the potential for targeting agricultural expansion in ways that achieve quantitatively optimal trade-offs between competing economic and environmental objectives: total converted land area (the reciprocal of potential yield); carbon loss, biodiversity loss and transportation costs. To allow different interests to find potential compromises, users can apply varying weights to examine the effects of their subjective preferences on the spatial allocation of new cropland and its costs. We find that small compromises from the objective to convert the highest yielding areas permit large savings in transportation costs, and the carbon and biodiversity impacts resulting from savannah conversion. For example, transferring just 30% of weight from a yield-maximizing objective equally between carbon and biodiversity protection objectives would increase total cropland area by just 2.7%, but result in avoided costs of 27?47% for carbon, biodiversity and transportation. Compromise solutions tend to focus agricultural expansion along existing transportation corridors and in already disturbed areas. Used appropriately, this type of model could help countries find agricultural expansion alternatives and related infrastructure and land use policies that help achieve production targets while helping to conserve Africa's rapidly transforming savannahs.This article is part of the themed issue ?Tropical grassy biomes: linking ecology, human use and conservation?.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box