Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1021/acssynbio.5b00179

http://scihub22266oqcxt.onion/10.1021/acssynbio.5b00179
suck pdf from google scholar
C4914944!4914944!26835539
unlimited free pdf from europmc26835539    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26835539      ACS+Synth+Biol 2016 ; 5 (6): 459-70
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators #MMPMID26835539
  • Woods ML; Leon M; Perez-Carrasco R; Barnes CP
  • ACS Synth Biol 2016[Jun]; 5 (6): 459-70 PMID26835539show ga
  • The engineering of transcriptional networks presents many challenges due to the inherent uncertainty in the system structure, changing cellular context, and stochasticity in the governing dynamics. One approach to address these problems is to design and build systems that can function across a range of conditions; that is they are robust to uncertainty in their constituent components. Here we examine the parametric robustness landscape of transcriptional oscillators, which underlie many important processes such as circadian rhythms and the cell cycle, plus also serve as a model for the engineering of complex and emergent phenomena. The central questions that we address are: Can we build genetic oscillators that are more robust than those already constructed? Can we make genetic oscillators arbitrarily robust? These questions are technically challenging due to the large model and parameter spaces that must be efficiently explored. Here we use a measure of robustness that coincides with the Bayesian model evidence, combined with an efficient Monte Carlo method to traverse model space and concentrate on regions of high robustness, which enables the accurate evaluation of the relative robustness of gene network models governed by stochastic dynamics. We report the most robust two and three gene oscillator systems, plus examine how the number of interactions, the presence of autoregulation, and degradation of mRNA and protein affects the frequency, amplitude, and robustness of transcriptional oscillators. We also find that there is a limit to parametric robustness, beyond which there is nothing to be gained by adding additional feedback. Importantly, we provide predictions on new oscillator systems that can be constructed to verify the theory and advance design and modeling approaches to systems and synthetic biology.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box