Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\27304918.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Stem+Cell+Reports 2016 ; 6 (6): 957-69 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation #MMPMID27304918
Mokhtari S; Colletti E; Atala A; Zanjani E; Porada C; Almeida-Porada G
Stem Cell Reports 2016[Jun]; 6 (6): 957-69 PMID27304918show ga
In utero hematopoietic stem/progenitor cell transplantation (IUHSCT) has only been fully successful in the treatment of congenital immunodeficiency diseases. Using sheep as a large animal model of IUHSCT, we demonstrate that administration of CD146+CXCL12+VEGFR2+ or CD146+CXCL12+VEGFR2? cells prior to, or in combination with, hematopoietic stem/progenitor cells (HSC), results in robust CXCL12 production within the fetal marrow environment, and significantly increases the levels of hematopoietic engraftment. While in the fetal recipient, donor-derived HSC were found to reside within the trabecular bone, the increased expression of VEGFR2 in the microvasculature of CD146+CXCL12+VEGFR2+ transplanted animals enhanced levels of donor-derived hematopoietic cells in circulation. These studies provide important insights into IUHSCT biology, and demonstrate the feasibility of enhancing HSC engraftment to levels that would likely be therapeutic in many candidate diseases for IUHSCT.