Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\27239255.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Stat+Biopharm+Res 2016 ; 8 (1): 12-21 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
A Multi-state Model for Designing Clinical Trials for Testing Overall Survival Allowing for Crossover after Progression #MMPMID27239255
Xia F; George SL; Wang X
Stat Biopharm Res 2016[]; 8 (1): 12-21 PMID27239255show ga
In designing a clinical trial for comparing two or more treatments with respect to overall survival (OS), a proportional hazards assumption is commonly made. However, in many cancer clinical trials, patients pass through various disease states prior to death and because of this may receive treatments other than originally assigned. For example, patients may crossover from the control treatment to the experimental treatment at progression. Even without crossover, the survival pattern after progression may be very different than the pattern prior to progression. The proportional hazards assumption will not hold in these situations and the design power calculated on this assumption will not be correct. In this paper we describe a simple and intuitive multi-state model allowing for progression, death before progression, post-progression survival and crossover after progression and apply this model to the design of clinical trials for comparing the OS of two treatments. For given values of the parameters of the multi-state model, we simulate the required number of deaths to achieve a specified power and the distribution of time required to achieve the requisite number of deaths. The results may be quite different from those derived using the usual PH assumption.