Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1002/humu.22534

http://scihub22266oqcxt.onion/10.1002/humu.22534
suck pdf from google scholar
C4876038!4876038!24599843
unlimited free pdf from europmc24599843    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid24599843      Hum+Mutat 2014 ; 35 (5): 585-93
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Elucidating Common Structural Features of Human Pathogenic Variations Using Large-Scale Atomic-Resolution Protein Networks #MMPMID24599843
  • Das J; Lee HR; Sagar A; Fragoza R; Liang J; Wei X; Wang X; Mort M; Stenson PD; Cooper DN; Yu H
  • Hum Mutat 2014[May]; 35 (5): 585-93 PMID24599843show ga
  • With the rapid growth of structural genomics, numerous protein crystal structures have become available. However, the parallel increase in knowledge of the functional principles underlying biological processes, and more specifically the underlying molecular mechanisms of disease, has been less dramatic. This notwithstanding, the study of complex cellular networks has made possible the inference of protein functions on a large scale. Here, we combine the scale of network systems biology with the resolution of traditional structural biology to generate a large-scale atomic-resolution interactome-network comprising 3,398 interactions between 2,890 proteins with a well-defined interaction interface and interface residues for each interaction. Within the framework of this atomic-resolution network, we have explored the structural principles underlying variations causing human-inherited disease. We find that in-frame pathogenic variations are enriched at both the interface and in the interacting domain, suggesting that variations not only at interface ?hot-spots,? but in the entire interacting domain can result in alterations of interactions. Further, the sites of pathogenic variations are closely related to the biophysical strength of the interactions they perturb. Finally, we show that biochemical alterations consequent to these variations are considerably more disruptive than evolutionary changes, with the most significant alterations at the protein interaction interface.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box