Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1152/ajpendo.00484.2015

http://scihub22266oqcxt.onion/10.1152/ajpendo.00484.2015
suck pdf from google scholar
C4835941!4835941!26884387
unlimited free pdf from europmc26884387    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26884387      Am+J+Physiol+Endocrinol+Metab 2016 ; 310 (8): E688-98
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity #MMPMID26884387
  • Smith KR; Hussain T; Karimian Azari E; Steiner JL; Ayala JE; Pratley RE; Kyriazis GA
  • Am J Physiol Endocrinol Metab 2016[Apr]; 310 (8): E688-98 PMID26884387show ga
  • Sweet taste receptors (STRs) on the tongue mediate gustatory sweet sensing, but their expression in the gut, pancreas, and adipose tissue suggests a physiological contribution to whole body nutrient sensing and metabolism. However, little is known about the function and contribution of these sugar sensors during metabolic stress induced by overnutrition and subsequent obesity. Here, we investigated the effects of high-fat/low-carbohydrate (HF/LC) diet on glucose homeostasis and energy balance in mice with global disruption of the sweet taste receptor protein T1R2. We assessed body composition, energy balance, glucose homeostasis, and tissue-specific nutrient metabolism in T1R2 knockout (T1R2-KO) mice fed a HF/LC diet for 12 wk. HF/LC diet-fed T1R2-KO mice gained a similar amount of body mass as did WT mice, but had reduced fat mass and increased lean mass relative to WT mice. T1R2-KO mice were also hyperphagic and hyperactive. Ablation of the T1R2 sugar sensor protected mice from HF/LC diet-induced hyperinsulinemia and altered substrate utilization, including increased rates of glucose oxidation and decreased liver triglyceride (TG) accumulation, despite normal intestinal fat absorption. Finally, STRs (T1r2/T1r3) were upregulated in the adipose tissue of WT mice in response to HF/LC diet, and their expression positively correlated with fat mass and glucose intolerance. The chemosensory receptor T1R2, plays an important role in glucose homeostasis during diet-induced obesity through the regulation of yet to be identified molecular mechanisms that alter energy disposal and utilization in peripheral tissues.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box