Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s13311-015-0408-0

http://scihub22266oqcxt.onion/10.1007/s13311-015-0408-0
suck pdf from google scholar
C4824028!4824028!26602550
unlimited free pdf from europmc26602550    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26602550      Neurotherapeutics 2016 ; 13 (2): 348-59
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • The 3 Rs of Stroke Biology: Radial, Relayed, and Regenerative #MMPMID26602550
  • Carmichael ST
  • Neurotherapeutics 2016[Apr]; 13 (2): 348-59 PMID26602550show ga
  • Stroke not only causes initial cell death, but also a limited process of repair and recovery. As an overall biological process, stroke has been most often considered from the perspective of early phases of ischemia, how these inter-relate and lead to expansion of the infarct. However, just as the biology of later stages of stroke becomes better understood, the clinical realities of stroke indicate that it is now more a chronic disease than an acute killer. As an overall biological process, it is now more important to understand how early cell death leads to the later, limited recovery so as develop an integrative view of acute to chronic stroke. This progression from death to repair involves sequential stages of primary cell death, secondary injury events, reactive tissue progenitor responses, and formation of new neuronal circuits. This progression is radial: from the tissue that suffers the infarct secondary injury signals, including free radicals and inflammatory cytokines, radiate out from the stroke core to trigger later regenerative events. Injury and repair processes occur not just in the local stroke site, but are also triggered in the connected networks of neurons that had existed in the stroke center: damage signals are relayed throughout a brain network. From these relayed, distributed damage signals, reactive astrocytosis, inflammatory processes, and the formation of new connections occur in distant brain areas. In short, emerging data in stroke cell death studies and the development of the field of stroke neural repair now indicate a continuum in time and in space of progressive events that can be considered as the 3 Rs of stroke biology: radial, relayed, and regenerative.Electronic supplementary material: The online version of this article (doi:10.1007/s13311-015-0408-0) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box