Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\26393917.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Biometrics 2016 ; 72 (1): 222-31 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
A Flexible, Computationally Efficient Method for Fitting the Proportional Hazards Model to Interval-Censored Data #MMPMID26393917
Wang L; McMahan CS; Hudgens MG; Qureshi ZP
Biometrics 2016[Mar]; 72 (1): 222-31 PMID26393917show ga
The proportional hazards model (PH) is currently the most popular regression model for analyzing time-to-event data. Despite its popularity, the analysis of interval-censored data under the PH model can be challenging using many available techniques. This paper presents a new method for analyzing interval-censored data under the PH model. The proposed approach uses a monotone spline representation to approximate the unknown nondecreasing cumulative baseline hazard function. Formulating the PH model in this fashion results in a finite number of parameters to estimate while maintaining substantial modeling flexibility. A novel expectation-maximization (EM) algorithm is developed for finding the maximum likelihood estimates of the parameters. The derivation of the EM algorithm relies on a two-stage data augmentation involving latent Poisson random variables. The resulting algorithm is easy to implement, robust to initialization, enjoys quick convergence, and provides closed-form variance estimates. The performance of the proposed regression methodology is evaluated through a simulation study, and is further illustrated using data from a large population-based randomized trial designed and sponsored by the United States National Cancer Institute.