Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1002/hbm.22138

http://scihub22266oqcxt.onion/10.1002/hbm.22138
suck pdf from google scholar
C4801486!4801486!22806915
unlimited free pdf from europmc22806915    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid22806915      Hum+Brain+Mapp 2013 ; 34 (12): 3247-66
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • An investigation of the structural, connectional, and functional subspecialization in the human amygdala #MMPMID22806915
  • Bzdok D; Laird AR; Zilles K; Fox PT; Eickhoff SB
  • Hum Brain Mapp 2013[Dec]; 34 (12): 3247-66 PMID22806915show ga
  • Although the amygdala complex is a brain area critical for human behavior, knowledge of its subspecialization is primarily derived from experiments in animals. We here employed methods for large?scale data mining to perform a connectivity?derived parcellation of the human amygdala based on whole?brain coactivation patterns computed for each seed voxel. Voxels within the histologically defined human amygdala were clustered into distinct groups based on their brain?wide coactivation maps. Using this approach, connectivity?based parcellation divided the amygdala into three distinct clusters that are highly consistent with earlier microstructural distinctions. Meta?analytic connectivity modelling then revealed the derived clusters' brain?wide connectivity patterns, while meta?data profiling allowed their functional characterization. These analyses revealed that the amygdala's laterobasal nuclei group was associated with coordinating high?level sensory input, whereas its centromedial nuclei group was linked to mediating attentional, vegetative, and motor responses. The often?neglected superficial nuclei group emerged as particularly sensitive to olfactory and probably social information processing. The results of this model?free approach support the concordance of structural, connectional, and functional organization in the human amygdala and point to the importance of acknowledging the heterogeneity of this region in neuroimaging research. Hum Brain Mapp 34:3247?3266, 2013. © 2012 Wiley Periodicals, Inc.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box