Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1371/journal.pone.0144734

http://scihub22266oqcxt.onion/10.1371/journal.pone.0144734
suck pdf from google scholar
C4674088!4674088!26650841
unlimited free pdf from europmc26650841    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26650841      PLoS+One 2015 ; 10 (12): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Kinetics of Label Retaining Cells in the Developing Rat Kidneys #MMPMID26650841
  • Wang J; Lin G; Alwaal A; Zhang X; Wang G; Jia X; Banie L; Villalta J; Lin CS; Lue TF
  • PLoS One 2015[]; 10 (12): ä PMID26650841show ga
  • Background: The kidney is a specialized low-regenerative organ with several different types of cellular lineages. The BrdU label-retaining cell (LRCs) approach has been used as part of a strategy to identify tissue-specific stem cells in the kidney; however, because the complementary base pairing in double-stranded DNA blocks the access of the anti-BrdU antibody to BrdU subunits, the stem cell marker expression in BrdU-labeled cells are often difficult to detect. In this study, we introduced a new cell labeling and detection method in which BrdU was replaced with 5-ethynyl-2-deoxyuridine (EdU) and examined the time-dependent dynamic changes of EdU-labeled cells and potential stem/progenitor markers in the development of kidney. Methods: Newborn rats were intraperitoneally injected with EdU, and their kidneys were harvested respectively at different time points at 1 day, 3 days, 1 week, 2 weeks, and 6 weeks post-injection. The kidney tissues were processed for EdU and cellular markers by immunofluorescence staining. Results: At the early stage, LRCs labeled by EdU were 2176.0 ± 355.6 cells at day one in each renal tissue section, but dropped to 168 ± 48.4 cells by week 6. As time increased, the numbers of LRCs were differentially expressed in the renal cortex and papilla. At the postnatal day one, nearly twice as many cells in the cortex were EdU-labeled as compared to the papilla (28.6 ± 3.6% vs. 15.6 ± 3.4%, P<0.05), while there were more LRCs within the renal papilla since the postnatal week one, and at the postnatal week 6, one third as many cells in the cortex were EdU-labeled as compared to the papilla (2.5 ± 0.1% vs. 7.7 ± 2.7%, P<0.05). The long-term LRCs at 6-week time point were associated exclusively with the glomeruli in the cortex and the renal tubules in the papilla. At 6 weeks, the EdU-labeled LRCs combined with expression of CD34, RECA-1, Nestin, and Synaptopodin were discretely but widely distributed within the glomeruli; Stro-1 around the glomeruli; and ?-smooth muscle actin (SMA) in arteries. Conversely, co-expression of CD34, RECA-1, and Nestin with the long term EdU-labeled LRCs was significantly lower in renal tubules (P<0.01), while Stro-1 and Synaptopodin were not detected. Conclusion: Our data found that at 6-week time point, EdU-labeled LRCs existing in the glomeruli expressed undifferentiated podocyte and endothelial markers at high rates, while those in the renal tubules expressed Nestin and vascular markers at low rates. To understand the characterization and localization of these EdU-LRCs, further studies will be needed to test cell lineage tracing, clonogenicity and differentiation potency, and the contributions to the regeneration of the kidney in response to renal injury/repair.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box