Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1042/BST20150021

http://scihub22266oqcxt.onion/10.1042/BST20150021
suck pdf from google scholar
C4613508!4613508!26551704
unlimited free pdf from europmc26551704    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26551704&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26551704      Biochem+Soc+Trans 2015 ; 43 (4): 632-8
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway #MMPMID26551704
  • Schmidt E
  • Biochem Soc Trans 2015[Aug]; 43 (4): 632-8 PMID26551704show ga
  • NADPH transfers reducing power from bioenergetic pathways to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) to support essential reductive systems. Surprisingly, it was recently shown that mouse livers lacking both TrxR1 and GR (?TR/GR-null?) can sustain redox (reduction-oxidation) homoeostasis using a previously unrecognized NADPH-independent source of reducing power fuelled by dietary methionine. The NADPH-dependent systems are robustly redundant in liver, such that disruption of either TrxR1 or GR alone does not cause oxidative stress. However, disruption of TrxR1 induces transcription factor Nrf2 (nuclear factor erythroid-derived 2-like-2) whereas disruption of GR does not. This suggests the Nrf2 pathway responds directly to the status of the thioredoxin-1 (Trx1) system. The proximal regulator of Nrf2 is Keap1 (Kelch-like ECH-associated protein-1), a cysteine (Cys)-rich protein that normally interacts transiently with Nrf2, targeting it for degradation. During oxidative stress, this interaction is stabilized, preventing degradation of newly synthesized Nrf2, thereby allowing Nrf2 accumulation. Within the Trx1 system, TrxR1 and peroxiredoxins (Prxs) contain some of the most reactive nucleophilic residues in the cell, making them likely targets for oxidants or electrophiles. We propose that Keap1 activity and therefore Nrf2 is regulated by interactions of Trx1 system enzymes with oxidants. In TR/GR-null livers, Nrf2 activity is further induced, revealing that TrxR-independent systems also repress Nrf2 and these might be induced by more extreme challenges.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box