Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12881-015-0236-4

http://scihub22266oqcxt.onion/10.1186/s12881-015-0236-4
suck pdf from google scholar
C4599794!4599794!26449372
unlimited free pdf from europmc26449372    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26449372      BMC+Med+Genet 2015 ; 16 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription #MMPMID26449372
  • Smestad JA; Maher LJ
  • BMC Med Genet 2015[]; 16 (ä): ä PMID26449372show ga
  • Background: Putative G-quadruplex-forming sequences (PQS) have long been implicated in regulation of transcription, though the actual mechanisms are not well understood. One proposed mechanism involves the activity of PQS-specific helicases belonging to the RecQ helicase family. However, patterns of PQS that correlate with transcriptional sensitivity to RecQ helicases are not well studied, and no adequate transcriptional model exists to account for PQS effects. Methods: To better understand PQS transcriptional effects, we analyze PQS motifs in genes differentially-transcribed in Bloom Syndrome (BS) and Werner Syndrome (WS), two disorders resulting in loss of PQS-interacting RecQ helicases.  We also correlate PQS genome-wide with transcription in multiple human cells lines while controlling for epigenetic status.  Finally, we perform neural network clustering of PQS motifs to assess whether certain motifs are over-represented in genes sensitive to RecQ helicase loss. Results: By analyzing PQS motifs in promoters of genes differentially-transcribed in BS and WS, we demonstrate that abundance of promoter PQS is generally higher in down-regulated genes and lower in up-regulated genes, and show that these effects are position-dependent. To interpret these correlations we determined genome-wide PQS correlations with transcription while controlling for epigenetic status. Our results identify multiple discrete transcription start site-proximal positions where PQS are correlated with either increased or decreased transcription. Finally, we report neural network clustering analysis of PQS motifs demonstrating that genes differentially-expressed in BS and WS are significantly biased in PQS motif composition. Conclusions: Our findings unveil unappreciated detail in the relationship between PQS, RecQ helicases, and transcription. We show that promoter PQS are generally correlated with reduced gene expression, and that this effect is relieved by RecQ helicases. We also show that PQS at certain positions on the downstream sense strand are correlated with increased transcription. We therefore propose a new transcriptional model in which promoter PQS have at least two distinct types of transcriptional regulatory effects. Electronic supplementary material: The online version of this article (doi:10.1186/s12881-015-0236-4) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box