Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1002/jcb.25191

http://scihub22266oqcxt.onion/10.1002/jcb.25191
suck pdf from google scholar
C4581524!4581524!25864714
unlimited free pdf from europmc25864714    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid25864714      J+Cell+Biochem 2015 ; 116 (11): 2476-83
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Correlating RANK Ligand/RANK Binding Kinetics with Osteoclast Formation and Function #MMPMID25864714
  • Warren JT; Zou W; Decker CE; Rohatgi N; Nelson CA; Fremont DH; Teitelbaum SL
  • J Cell Biochem 2015[Nov]; 116 (11): 2476-83 PMID25864714show ga
  • The interaction between Receptor Activator of NF-?B Ligand (RANKL) and its receptor RANK is essential for the differentiation and bone resorbing capacity of the osteoclast. Osteoprotegerin (OPG), a soluble homodimer, acts as a decoy receptor for RANKL and thus inhibits osteoclastogenesis. An imbalance in the RANKL/RANK/OPG axis, with decreased OPG and/or increased RANKL, is associated with diseases that favor bone loss, including osteoporosis. Recently, we established a yeast surface display system and screened libraries of randomly mutated RANKL proteins to identify mutations that abolish binding to OPG while preserving recognition of RANK. These efforts yielded several RANKL variants possessing substantially higher affinity for RANK compared to their wild-type (WT) counterpart. Using recombinant RANKL mutant proteins, we find those with increased affinity for RANK produce more robust signaling in osteoclast lineage cells and have greater osteoclastogenic potential. Our results are the first to document gain of function RANKL mutations. They indicate that the physiological RANKL/RANK interaction is not optimized for maximal signaling and function, perhaps reflecting the need to maintain receptor specificity within the tumor necrosis factor superfamily (TNFSF). Instead, we find, a biphasic relationship exists between RANKL/RANK affinity and osteoclastogenic capacity. In our panel of RANKL variants, this relationship is driven entirely by manipulation of the kinetic off-rate. Our structure-based and yeast surface display-derived insights into manipulating this critical signaling axis may aid in the design of novel anti-resorptive therapies as well as provide a paradigm for design of other receptor-specific TNF superfamily ligand variants.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box