Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.bpj.2015.05.040

http://scihub22266oqcxt.onion/10.1016/j.bpj.2015.05.040
suck pdf from google scholar
C4576150!4576150!26210208
unlimited free pdf from europmc26210208    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26210208      Biophys+J 2015 ; 109 (6): 1149-56
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • A Molecular Dynamics Study of Allosteric Transitions in Leishmania mexicana Pyruvate Kinase #MMPMID26210208
  • Naithani A; Taylor P; Erman B; Walkinshaw M
  • Biophys J 2015[Sep]; 109 (6): 1149-56 PMID26210208show ga
  • A comparative molecular dynamics analysis of the pyruvate kinase from Leishmania mexicana is presented in the absence and presence of the allosteric effector fructose 2,6-bisphosphate. Comparisons of the simulations of the large 240 kDa apo and holo tetramers show that binding of fructose 2,6-bisphosphate cools the enzyme and reduces dynamic movement, particularly of the B-domain. The reduced dynamic movement of the holo form traps the pyruvate kinase tetramer in its enzymatically active state with the B-domain acting as a lid to cover the active site. The simulations are also consistent with a transition of the mobile active-site ?6? helix, which would adopt a helical conformation in the active R-state and a less structured coil conformation in the inactive T-state. Analysis of the rigid body motions over the trajectory highlights the concerted anticorrelated rigid body rocking motion of the four protomers, which drives the T to R transition. The transitions predicted by these simulations are largely consistent with the Monod-Wyman-Changeux model for allosteric activation but also suggest that rigidification or cooling of the overall structure upon effector binding plays an additional role in enzyme activation.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box