Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1093/bib/bbu050

http://scihub22266oqcxt.onion/10.1093/bib/bbu050
suck pdf from google scholar
C4570202!4570202!25596401
unlimited free pdf from europmc25596401    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid25596401      Brief+Bioinform 2015 ; 16 (5): 759-68
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Detecting associations of rare variants with common diseases: collapsing or haplotyping? #MMPMID25596401
  • Wang M; Lin S
  • Brief Bioinform 2015[Sep]; 16 (5): 759-68 PMID25596401show ga
  • In recent years, a myriad of new statistical methods have been proposed for detecting associations of rare single-nucleotide variants (SNVs) with common diseases. These methods can be generally classified as ?collapsing? or ?haplotyping? based. The former is the predominant class, composed of most of the rare variant association methods proposed to date. However, recent works have suggested that haplotyping-based methods may offer advantages and can even be more powerful than collapsing methods in certain situations. In this article, we review and compare collapsing- versus haplotyping-based methods/software in terms of both power and type I error. For collapsing methods, we consider three approaches: Combined Multivariate and Collapsing, Sequence Kernel Association Test and Family-Based Association Test (FBAT): the first two are population based and are among the most popular; the last test is family based, a modification from the popular FBAT to accommodate rare SNVs. For haplotyping-based methods, we include Logistic Bayesian Lasso (LBL) for population data and family-based LBL (famLBL) for family (trio) data. These two methods are selected, as they can be used to test association for specific rare and common haplotypes. Our results show that haplotype methods can be more powerful than collapsing methods if there are interacting SNVs leading to larger haplotype effects. Even if only common SNVs are genotyped, haplotype methods can still detect specific rare haplotypes that tag rare causal SNVs. As expected, family-based methods are robust, whereas population-based methods are susceptible, to population substructure. However, the population-based haplotype approach appears to have smaller inflation of type I error than its collapsing counterparts.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box