Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12872-015-0075-4

http://scihub22266oqcxt.onion/10.1186/s12872-015-0075-4
suck pdf from google scholar
C4520206!4520206!26223796
unlimited free pdf from europmc26223796    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26223796      BMC+Cardiovasc+Disord 2015 ; 15 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Role of SIRT3 in Angiotensin II-induced human umbilical vein endothelial cells dysfunction #MMPMID26223796
  • Liu H; Chen T; Li N; Wang S; Bu P
  • BMC Cardiovasc Disord 2015[]; 15 (ä): ä PMID26223796show ga
  • Background: SIRT3, a member of the sirtuin family of NAD+-dependent deacetylases, resides primarily in the mitochondria and has been shown to deacetylate several metabolic and respiratory enzymes that regulate important mitochondrial functions. Previous researches show an important role of SIRT3 in regulating the production of reactive oxygen species (ROS), and highlight the ability of SIRT3 to protect cells from oxidative damage. A key substance of renin-angiotensin-aldosterone system (RAAS), Angiotensin II (AngII) can induce cells dysfunction by increasing the production of ROS. In this paper, we focus on the role of SIRT3 in AngII-induced human umbilical vein endothelial cells (HUVECs) dysfunction. Methods: To study the influence of AngII on SIRT3 expression, HUVECs were treated with AngII of 10?7, 10?6, 10?5 mol/L for 24 h. SIRT3 expression was detected by wester-blotting analysis and RT-PCR. In addition, to research the role of SIRT3 in AngII-induced HUVECs,we used SIRT3 siRNA to knock down SIRT3 expression in HUVECs. Cells pretreated with negative control siRNA or SIRT3 siRNA were exposed to AngII for 24 h, and endothelial nitric oxide synthase (eNOS) expression, eNOS activity, total level of nitric oxide (NO) and ROS generation of each group were detected. Results: Here we show that AngII treatment could increase generation of ROS, and decrease eNOS activity and total level of NO, while upregulated eNOS expression as a compensatory mechanism. The stimulation of AngII upregulated the expression of SIRT3 in HUVECs. SIRT3 siRNA worsen the AngII-induced effects above, besides, downregulated eNOS protein expression. Conclusion: These data suggest that SIRT3 plays a role of protection in AngII-induced HUVECs dysfunction via regulation of ROS generation.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box