Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s13326-015-0021-5

http://scihub22266oqcxt.onion/10.1186/s13326-015-0021-5
suck pdf from google scholar
C4492092!4492092!26150906
unlimited free pdf from europmc26150906    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26150906      J+Biomed+Semantics 2015 ; 6 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Discovering relations between indirectly connected biomedical concepts #MMPMID26150906
  • Weissenborn D; Schroeder M; Tsatsaronis G
  • J Biomed Semantics 2015[]; 6 (ä): ä PMID26150906show ga
  • Background: The complexity and scale of the knowledge in the biomedical domain has motivated research work towards mining heterogeneous data from both structured and unstructured knowledge bases. Towards this direction, it is necessary to combine facts in order to formulate hypotheses or draw conclusions about the domain concepts. This work addresses this problem by using indirect knowledge connecting two concepts in a knowledge graph to discover hidden relations between them. The graph represents concepts as vertices and relations as edges, stemming from structured (ontologies) and unstructured (textual) data. In this graph, path patterns, i.e. sequences of relations, are mined using distant supervision that potentially characterize a biomedical relation. Results: It is possible to identify characteristic path patterns of biomedical relations from this representation using machine learning. For experimental evaluation two frequent biomedical relations, namely ?has target?, and ?may treat?, are chosen. Results suggest that relation discovery using indirect knowledge is possible, with an AUC that can reach up to 0.8, a result which is a great improvement compared to the random classification, and which shows that good predictions can be prioritized by following the suggested approach. Conclusions: Analysis of the results indicates that the models can successfully learn expressive path patterns for the examined relations. Furthermore, this work demonstrates that the constructed graph allows for the easy integration of heterogeneous information and discovery of indirect connections between biomedical concepts. Electronic supplementary material: The online version of this article (doi:10.1186/s13326-015-0021-5) contains supplementary material, which is available to authorized users.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box