Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/srep11830

http://scihub22266oqcxt.onion/10.1038/srep11830
suck pdf from google scholar
C4490346!4490346!26137854
unlimited free pdf from europmc26137854    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26137854&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26137854      Sci+Rep 2015 ; 5 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Highly responsive MoS2 photodetectors enhanced by graphene quantum dots #MMPMID26137854
  • Chen C; Qiao H; Lin S; Man Luk C; Liu Y; Xu Z; Song J; Xue Y; Li D; Yuan J; Yu W; Pan C; Ping Lau S; Bao Q
  • Sci Rep 2015[]; 5 (ä): ä PMID26137854show ga
  • Molybdenum disulphide (MoS2), which is a typical semiconductor from the family of layered transition metal dichalcogenides (TMDs), is an attractive material for optoelectronic and photodetection applications because of its tunable bandgap and high quantum luminescence efficiency. Although a high photoresponsivity of 880?2000?AW?1 and photogain up to 5000 have been demonstrated in MoS2-based photodetectors, the light absorption and gain mechanisms are two fundamental issues preventing these materials from further improvement. In addition, it is still debated whether monolayer or multilayer MoS2 could deliver better performance. Here, we demonstrate a photoresponsivity of approximately 104 AW?1 and a photogain of approximately 107 electrons per photon in an n-n heterostructure photodetector that consists of a multilayer MoS2 thin film covered with a thin layer of graphene quantum dots (GQDs). The enhanced light-matter interaction results from effective charge transfer and the re-absorption of photons, leading to enhanced light absorption and the creation of electron-hole pairs. It is feasible to scale up the device and obtain a fast response, thus making it one step closer to practical applications.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box