Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\26051359
.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Sci+Rep
2015 ; 5
(ä): 10888
Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Analysis of the human diseasome using phenotype similarity between common,
genetic, and infectious diseases
#MMPMID26051359
Hoehndorf R
; Schofield PN
; Gkoutos GV
Sci Rep
2015[Jun]; 5
(ä): 10888
PMID26051359
show ga
Phenotypes are the observable characteristics of an organism arising from its
response to the environment. Phenotypes associated with engineered and natural
genetic variation are widely recorded using phenotype ontologies in model
organisms, as are signs and symptoms of human Mendelian diseases in databases
such as OMIM and Orphanet. Exploiting these resources, several computational
methods have been developed for integration and analysis of phenotype data to
identify the genetic etiology of diseases or suggest plausible interventions. A
similar resource would be highly useful not only for rare and Mendelian diseases,
but also for common, complex and infectious diseases. We apply a semantic
text-mining approach to identify the phenotypes (signs and symptoms) associated
with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating
that they can correctly identify known disease-associated genes in mice and
humans with high accuracy. Using a phenotypic similarity measure, we generate a
human disease network in which diseases that have similar signs and symptoms
cluster together, and we use this network to identify closely related diseases
based on common etiological, anatomical as well as physiological underpinnings.