Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/srep10733

http://scihub22266oqcxt.onion/10.1038/srep10733
suck pdf from google scholar
C4451790!4451790!26035774
unlimited free pdf from europmc26035774    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26035774      Sci+Rep 2015 ; 5 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode #MMPMID26035774
  • Sun D; Jiang Y; Wang H; Yao Y; Xu G; He K; Liu S; Tang Y; Liu Y; Huang X
  • Sci Rep 2015[]; 5 (ä): ä PMID26035774show ga
  • Poor cycling performance arising from the instability of anode is still a main challenge for aqueous rechargeable lithium batteries (ARLB). In the present work, a high performance LiTi2(PO4)3/C composite has been achieved by a novel and facile preparation method associated with an in-situ carbon coating approach. The LiTi2(PO4)3/C nanoparticles show high purity and the carbon layer is very uniform. When used as an anode material, the ARLB of LiTi2(PO4)3/C//LiMn2O4 delivered superior cycling stability with a capacity retention of 90% after 300 cycles at 30?mA?g?1 and 84% at 150?mA?g?1 over 1300 cycles. It also demonstrated excellent rate capability with reversible discharge capacities of 115 and 89?mAh?g?1 (based on the mass of anode) at 15 and 1500?mA?g?1, respectively. The superior electrochemical properties should be mainly ascribed to the high performance of LiTi2(PO4)3/C anode, benefiting from its nanostructure, high-quality carbon coating, appropriate crystal structure and excellent electrode surface stability as verified by Raman spectra, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box