Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1210/en.2014-2027

http://scihub22266oqcxt.onion/10.1210/en.2014-2027
suck pdf from google scholar
C4430620!4430620!25807043
unlimited free pdf from europmc25807043    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid25807043      Endocrinology 2015 ; 156 (6): 2049-58
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Bisphenol A Exposure Disrupts Metabolic Health Across Multiple Generations in the Mouse #MMPMID25807043
  • Susiarjo M; Xin F; Bansal A; Stefaniak M; Li C; Simmons RA; Bartolomei MS
  • Endocrinology 2015[Jun]; 156 (6): 2049-58 PMID25807043show ga
  • Accumulating evidence has suggested that a suboptimal early life environment produces multigenerational developmental defects. A proposed mechanism is stable inheritance of DNA methylation. Here we show that maternal bisphenol A (BPA) exposure in C57BL/6 mice produces multigenerational metabolic phenotypes in their offspring. Using various methods including dual-energy X-ray absorptiometry analyses, glucose tolerance tests, and perifusion islet studies, we showed that exposure to 10 ?g/kg/d and 10 mg/kg/d BPA in pregnant F0 mice was associated with higher body fat and perturbed glucose homeostasis in F1 and F2 male offspring but not female offspring. To provide insight into the mechanism of the multigenerational metabolic abnormalities, we investigated the maternal metabolic milieu and inheritance of DNA methylation across generations. We showed that maternal glucose homeostasis during pregnancy was altered in the F0 but not F1 female mice. The results suggested that a compromised maternal metabolic milieu may play a role in the health of the F1 offspring but cannot account for all of the observed multigenerational phenotypes. We further demonstrated that the metabolic phenotypes in the F1 and F2 BPA male offspring were linked to fetal overexpression of the imprinted Igf2 gene and increased DNA methylation at the Igf2 differentially methylated region 1. Studies in H19?3.8/+ mouse mutants supported the role of fetal Igf2 overexpression in altered adult glucose homeostasis. We conclude that early life BPA exposure at representative human exposure levels can perturb metabolic health across multiple generations in the mouse through stable inheritance of DNA methylation changes at the Igf2 locus.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box