Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\25751304.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Nat+Nanotechnol 2015 ; 10 (4): 370-9 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers #MMPMID25751304
Kotagiri N; Sudlow GP; Akers WJ; Achilefu S
Nat Nanotechnol 2015[Apr]; 10 (4): 370-9 PMID25751304show ga
The combination of light and photosensitizers for phototherapeutic interventions such as photodynamic therapy has transformed medicine and biology. However, the shallow penetration of light in tissues and the reliance on tissue oxygenation to generate cytotoxic radicals have limited the method to superficial or endoscope-accessible lesions. Here, we report a way to overcome these limitations by using Cerenkov radiation from radionuclides to activate an oxygen-independent nanophotosensitizer, titanium dioxide (TiO2). We show that administration of transferrin-coated TiO2 nanoparticles and clinical grade radionuclides in mice and co-localization in tumours resulted in either complete tumour remission or increased their median survival. Histological analysis of tumour sections showed selective destruction of cancerous cells and high numbers of tumour infiltrating lymphocytes, suggesting that both free radicals and the activation of the immune system mediated the destruction. Our results offer a way to harness low radiance-sensitive nanophotosensitizers to achieve depth-independent Cerenkov radiation-mediated therapy.