Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.exer.2014.09.013

http://scihub22266oqcxt.onion/10.1016/j.exer.2014.09.013
suck pdf from google scholar
C4259857!4259857!25281830
unlimited free pdf from europmc25281830    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid25281830      Exp+Eye+Res 2014 ; ä (ä): 151-60
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Cellular and extracellular matrix modulation of corneal stromal opacity #MMPMID25281830
  • Torricelli AAM; Wilson SE
  • Exp Eye Res 2014[Dec]; ä (ä): 151-60 PMID25281830show ga
  • Stromal transparency is a critical factor contributing to normal function of the visual system. Corneal injury, surgery, disease and infection elicit complex wound healing responses that serve to protect against insults and maintain the integrity of the cornea, and subsequently to restore corneal structure and transparency. However, in some cases these processes result in prolonged loss of corneal transparency and resulting diminished vision. Corneal opacity is mediated by the complex actions of many cytokines, growth factors, and chemokines produced by the epithelial cells, stromal cells, bone marrow-derived cells, lacrimal tissues, and nerves. Myofibroblasts, and the disorganized extracellular matrix produced by these cells, are critical determinants of the level and persistence of stromal opacity after corneal injury. Decreases in corneal crystallins in myofibroblasts and corneal fibroblasts contribute to cellular opacity in the stroma. Regeneration of a fully functional epithelial basement membrane (BM) appears to have a critical role in the maintenance of corneal stromal transparency after mild injuries and recovery of transparency when opacity is generated after severe injuries. The epithelial BM likely has a regulatory function whereby it modulates epithelium-derived growth factors such as transforming growth factor (TGF) ? and platelet-derived growth factor (PDGF) that drive the development and persistence of myofibroblasts from precursor cells. The purpose of this article is to review the factors involved in the maintenance of corneal transparency and to highlight the mechanisms involved in the appearance, persistency and regression of corneal opacity after stromal injury.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box